

55th INTERNATIONAL CHEMISTRY OLYMPIAD 2023 UK Round One MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme and where ECF is not allowed.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	Total
Marks Available	7	20	18	21	20	86

1.	This question is about rocket fuel	Mark
(a)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ State symbols not required Accept any multiple with correct stoichiometry e.g., $2H_2 + O_2 \rightarrow 2H_2O$	R
(b)	+494 kJ mol ⁻¹ If the equation used is H ₂ + ½O ₂ → H ₂ O: Δ _r H = ∑ _{bonds broken(reactants) - ∑_{bonds formed (products)} -241 kJ mol⁻¹ = [(432 + y) - (2 × 460)] kJ mol⁻¹ y = [-241 - 432 + (2 × 460)] kJ mol⁻¹ y = +247 kJ mol⁻¹ (for ½ mole of O₂) 1 mole of O=O is 2y = +494 kJ mol⁻¹ If the equation used is 2H₂ + O₂ → 2H₂O: Δ_rH = ∑_{bonds broken(reactants)} - ∑_{bonds formed (products)} [2 × -241] kJ mol⁻¹ = [(2 × 432) + y - (4 × 460)] kJ mol⁻¹ y = [(2 × -241) - (2 × 432) + (4 × 460)] kJ mol⁻¹}	
(C)	(i) 35.2 mol 1 dm ³ = 1000 cm ³ Density (ρ) = mass (m) / volume (v) m(H ₂) = ρ v m(H ₂) = 0.071 g cm ⁻³ × 1000 cm ³ = 71 g n(H ₂)= m/M _r = 71 g / 2.016 g mol ⁻¹ = 35.2 mol	
	(ii) 8480 kJ Energy released = 35.2 mol × +241 kJ mol ⁻¹ = 8480 kJ	
(d)	(i) $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	$\mathbf{\nabla}$
	Oxidation state of H in reactant Oxidation state of C in reactant 0 +4 Oxidation state of H in product Oxidation state of C in product +1 -4 All four oxidation states must be correct for the mark. + sign is not needed.	R
(e)	-869.0 kJ $CH_{4(g)} + 2O_{2(g)} \xrightarrow{-890.8 \text{ kJ mol}^{-1}} CO_{2(g)} + H_2O_{(g)}$ $+ 8.2 \text{ kJ mol}^{-1}$ $+ (2 \times 6.8) \text{ kJ mol}^{-1}$ $CH_{4(l)} + 2O_{2(l)}$ $z = [+8.2 + (2 \times 6.8) + -890.8] \text{ kJ mol}^{-1} = -869.0 \text{ kJ mol}^{-1}, \text{ therefore } -869.0 \text{ kJ}.$ <i>No penalty if final answer in kJ mol</i> ⁻¹ . <i>No marks if value given in wrong units.</i>	
	Total out of 7	7

2.	This question is about electronegativity, bonding and structure	Mark
(a)	0.962 $\chi_{Cl} - \chi_H = 0.102 \sqrt{427 - \frac{244 + 432}{2}}$ $\chi_{Cl} - \chi_H = 0.962$ The value should be positive, but accept if quoted as -0.962.	
(b)	3.16 $\chi_{Cl} - \chi_{H} = 0.962$ $\chi_{Cl} = 0.962 + 2.20$ $\chi_{Cl} = 3.16$ ECF can be awarded from part (a). Answer to part (b) must be 2.20 more positive than answer to part (a). No marks are to be awarded for calculation that assumes Cl is less electronegative than H.	
(c)	2.96 $\chi_N = 0.00197[E_i + E_{ea}] + 0.19$ $\chi_N = 0.00197[(14.5 \times 96.49) + 6.80] + 0.19$ $\chi_N = 2.96$	
(d)	 (i) I (ii) E (iii) L (iv) G (v) J All five correct scores two marks. Four or three correct scores one mark. Two, one or none correct scores no marks. 	R
(e)	AIP Allow if they have written compound I. No ECF allowed if they have labelled one of the other five compounds in part (d) closer to the metallic corner of the triangle.	
(f)	 (i) B (ii) N (iii) E One mark each 	N
(g)	 (i) H₃BO₃ + NH₃ → BN + 3H₂O State symbols not required. Accept any multiple with correct stoichiometry. 	

(ii)	$B_2O_3 + 10N_2 + 3CaB_6 \rightarrow 20BN + 3CaO$ State symbols not required. Accept any multiple with correct stoichiometry.	
) (i)	$\begin{array}{l} 4.78 \times 10^{-23} \ \text{cm}^3 \\ volume \ of \ cube = \ (side \ length)^3 \\ v = a^3 = (3.63 \times 10^{-10} \ \text{m})^3 = 4.78 \times 10^{-29} \ \text{m}^3 = 4.78 \times 10^{-23} \ \text{cm}^3 \\ No \ marks \ for \ answer \ in \ m^3 \ or \ \text{\AA} \ as \ question \ asked \ for \ cm^3. \end{array}$	V
(ii)	3.45 g cm ⁻³ Unit cell has 4 B and 4 N. (4 N completely within cube. $8 \times \frac{1}{8}$ B on corners, $6 \times \frac{1}{2}$ B on faces = 4 B). Mass of unit cell is 4(10.81+14.01) g mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹ = 1.649 × 10 ⁻²² g Density (ρ) = mass (m) / volume (v) = 1.649 × 10 ⁻²² g / 4.78 × 10 ⁻²³ cm ³ = 3.45 g cm ⁻³ Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(i).	ম ম ম
(iii)	$3.74 \times 10^{-23} \text{ cm}^{3}$ area of regular hexagon = $\frac{3\sqrt{3}}{2} \times (side \ length)^{2}$ area = $\frac{3\sqrt{3}}{2} \times (1.47 \times 10^{-10} \text{ m})^{2} = 5.614 \times 10^{-20} \text{ m}^{2} = 5.614 \times 10^{-16} \text{ cm}^{2}$ volume of right prism = (area of base) × (height) v = 5.614 \times 10^{-16} \text{ cm}^{2} \times 6.66 \times 10^{-8} \text{ cm} = 3.74 \times 10^{-23} \text{ cm}^{3} No marks for answer in m ³ or Å as question asked for cm ³ .	M
(iv)	2.20 g cm ⁻³ Unit cell has 2 B and 2 N. $(6 \times 1/_6$ B on corners and $3 \times 1/_3$ B on edges, making total of 2). $(6 \times 1/_6$ N on corners and $3 \times 1/_3$ N on edges, making total of 2). Mass of unit cell is 2(10.81+14.01) g mol ⁻¹ / 6.02 × 10 ²³ mol ⁻¹ = 8.246 × 10 ⁻²³ g Density (ρ) = mass (m) / volume (v) = 8.246 × 10 ⁻²³ g / 3.74 × 10 ⁻²³ cm ³ = 2.20 g cm ⁻³ Correct final answer scores full marks. First mark for correct number of B and N in unit cell. Second mark for correct mass of unit cell. Third mark for final answer. Allow ECF from part (h)(iii).	ম ম ম ম
(v)	Unit cell has 2 B and 2 N. (1 B completely within unit cell, $4 \times \frac{1}{12}$ and $4 \times \frac{2}{12}$ B on corners, making total of 2). (1 N completely within unit cell, $2 \times \frac{1}{6}$ and $2 \times \frac{2}{6}$ N on edges, making total of 2). <i>Both must be correct for the mark.</i>	
	Total out of 20	20

One mark ead 31 Full formula is Structure	s C ₃₁ H ₅₂ O ₃ .		consistent wit	h the data fr	om	
31 <i>Full formula is</i> Structure	s C ₃₁ H ₅₂ O ₃ .	this structure	consistent wit	h the data fr	om	
Full formula is	ls					
ОН	mass sp	ectrometry?	¹ H NM	R? .	¹³ C NMR?	
он	ſ	1			¹³ C NMR?	
, ⁰		✓			\checkmark	
//	✓		~		\checkmark	
o	:	×	~		✓	
	,	/	~		×	
nark for each	fully correct c	olumn.	I			
ehyde/ketone	phospho	nium ylide	m	ajor alkene p	product	
O ↓ H	Ph ₃ P-	\neg				
O H H	PPh ₃					
	ehyde/ketone	$\begin{array}{c c} & & & \\ \hline \\$	$\begin{array}{c c} O \\ H \\ \hline \hline H \\ \hline H \\ \hline \hline$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: constraint of the sector of the s

(g)	$3.46 \times 10^{-2} \text{ mol dm}^{-3}$								
	Labelling	the total c	oncentratio	on as c_{tot} , we ha	ve the two equation	ons			
	$\left[\mathrm{CO}_{2(\mathrm{ch})}\right] + \left[\mathrm{HCO}_{3(\mathrm{ch})}^{-}\right] = c_{tot} \qquad \text{and} \qquad \frac{\left[\mathrm{H}_{(\mathrm{ch})}^{+}\right]\left[\mathrm{HCO}_{3(\mathrm{ch})}^{-}\right]}{\left[\mathrm{CO}_{2(\mathrm{ch})}\right]} = K$								
	We use the first equation to express $[HCO_{3(ch)}^{-}] = c_{tot} - [CO_{2(ch)}]$ and substitute this into the second equation as								
	$\frac{[H_{(ch)}^+](c_{tot} - [CO_{2(ch)}])}{[CO_{2(ch)}]}$								
	With $[H^+_{(ch)}] = 10^{-pH} = 10^{-5.20} \text{ mol dm}^{-3}$, this rearranges to give								
		$\left[\text{CO}_{2(ch)} \right]$	$=\frac{c_{tot}}{1+\frac{K}{[H_{(ch}^{+}]}}$	$\frac{1}{10000000000000000000000000000000000$	$\frac{\text{mol dm}^{-3}}{\frac{7 \text{ mol dm}^{-3}}{\text{mol dm}^{-3}}} = 3.46$	× 10 ⁻² n	nol dm ⁻³		
	Full credit [H ⁺ _(ch)] in t			ation of CO_2 in c	heese. One mark	for corre	ectly expressing		
(h)		$k_{\rm H}V_{\rm ch}p_{\rm b}$	$\frac{4\pi r^3 p_{\rm b}}{3RT}$	$\frac{4\pi r^3 p_{\rm b}}{3RT} K \cdot 10^{\rm pH}$	$K \cdot 10^{\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$	$\frac{V_{\rm ch}p_{\rm b}}{3RT}$	$K \cdot 10^{-\mathrm{pH}} k_{\mathrm{H}} V_{\mathrm{ch}} p_{\mathrm{b}}$		
	n _{CO2(g)}		 ✓ 						
	n _{CO_{2(ch)}}	✓							
	$n_{ m HCO}^{ m 3(ch)}$				✓				
	One mark for every correct identification. How the expressions are derived is explained below (not required of students):								
	For $CO_{2(g)}$ the ideal gas law states $pV = nRT$, which rearranges to $n_{CO_{2(g)}} = \frac{pV}{RT} = \frac{4\pi r^3 p_b}{3RT}$								
	For $CO_{2(ch)}$, $n_{CO_{2(ch)}} = [CO_{2(ch)}] \cdot V_{ch}$, which combined with Henry's law gives $n_{CO_{2(ch)}} = k_H V_{ch} p_b$								
	For HCO _{3⁻(ch)} rearrange the expression for the acid dissociation constant as								
	$n_{HCO_{3(ch)}^{-}} = \left[HCO_{3(ch)}^{-}\right] \cdot V_{ch} = K \frac{\left[CO_{2(ch)}\right] \cdot V_{ch}}{\left[H_{(ch)}^{+}\right]} = K \cdot 10^{pH} k_{H} V_{ch} p_{b}$								
(i)	$a = k_{\rm H} V_{\rm ch} (1 + K \cdot 10^{\rm pH})$ and $b = \frac{4\pi}{3RT}$								
	One mark each for correct expression for <i>a</i> and <i>b</i> .								
	Working (not required of students):								
	$\eta = n_{CO_{2(ch)}} + n_{HCO_{3(ch)}} + n_{CO_{2(g)}}$								
	$=k_{H}V_{ch}\left(p_{atm}+\frac{\gamma}{r}\right)+K\cdot\ 10^{pH}k_{H}V_{ch}\left(p_{atm}+\frac{\gamma}{r}\right)+\frac{4\pi r^{3}}{3RT}\left(p_{atm}+\frac{\gamma}{r}\right)$								
	we can collect the terms as								
			$\left(k_H V_{ch} + \right)$	$K \cdot k_H V_{ch} \cdot 10^{pH}$	$+ \frac{4\pi r^3}{3RT} \Big) \Big(p_{atm} +$	$\frac{\gamma}{r}\Big) = \eta$			
	II							11	