

52nd INTERNATIONAL CHEMISTRY OLYMPIAD 2020 UK Round One

MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae as long as the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	6	Total
Marks Available	10	10	17	12	17	20	86

This resource was downloaded from https://rsc.li/2WmGF2V

1.	This question is about calcium carbide	Mark
(a)	(i) $CaO + 3C \rightarrow CaC_2 + CO$ Must be fully correct for mark.	M
	(ii) CCCC Charge must be indicated for mark to be awarded.	R
(b)	$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$ Must be fully correct for mark.	M
(c)	Moles of HCl(aq) = $0.0346 \text{ dm}^3 \times 0.250 \text{ mol dm}^{-3} = 8.65 \times 10^{-3} \text{ mol}$ Moles of Ca(OH) ₂ in 20.0 cm ³ = $8.65 \times 10^{-3} \text{ mol} / 2 = 4.325 \times 10^{-3} \text{ mol in } 20.0 \text{ cm}^3$ Moles of Ca(OH) ₂ in 50.0 cm ³ = $2.5 \times 4.325 \times 10^{-3} \text{ mol} = 0.0108 \text{ mol}$ (<i>One mark</i>) Moles of CaC ₂ = 0.0108 mol M _r (CaC ₂) = 64.1 g mol^{-1} Mass of CaC ₂ = $0.0108 \text{ mol} \times 64.1 \text{ g mol}^{-1} = 0.693 \text{ g}$ Percentage by mass CaC ₂ = $0.693 \text{ g} / 0.752 \text{ g} = 92.2\%$ (<i>One mark</i>) <i>Correct answer scores both marks regardless of working</i> .	N
(d)	2 calcium atoms and 4 carbon atoms. 1 mark for each correct answer.	N
(e)	Molar volume of CaC ₂ = 64.1 g mol ⁻¹ / 2.20 g cm ⁻³ = 29.14 cm ³ = 2.914 × 10 ⁻⁵ m ³ <i>One mark for correct molar volume in m</i> ³ . Volume of CaC ₂ unit cell = $2 \times 2.914 \times 10^{-5}$ m ³ / 6.02×10^{23} mol ⁻¹ = 9.68×10^{-29} m ³ = 96.8 Å ³ <i>One mark for correct molar volume in m</i> ³ or <i>in</i> Å ³ . Length of side z = 9.68×10^{-29} m ³ / $(3.88 \times 10^{-10} \text{ m})^2 = 6.43 \times 10^{-10}$ m = 6.43 Å <i>One mark Correct answer scores three marks regardless of working.</i>	N N N
	Total out of 10	10

2.	This question is about hydrogen as a fuel	Mark
(a)	$\Delta H^{\Theta}_{r} = \Sigma \Delta H^{\Theta}_{f} (\text{Products}) - \Sigma \Delta H^{\Theta}_{f} (\text{Reactants})$ $\Delta H^{\Theta}_{r} = -393.5 \text{ kJ mol}^{-1} - (-74.8 \text{ kJ mol}^{-1} + 2 \times -285.8 \text{ kJ mol}^{-1})$ $= +253 \text{ kJ mol}^{-1}$	R
(b)	Reaction 2: $2H^+(aq) + 2e^- \rightarrow H_2(g)$ (Reduction occurs at the cathode). Either "Reaction 2" or the reaction equation gets the mark.	V
(c)	$\Delta H^{\ominus} = 2 \times 285.8 \text{ kJ mol}^{-1} = +571.6 \text{ kJ mol}^{-1}$ Sign must be correct for mark. A negative value scores zero marks.	\mathbf{N}
(d)	$\Delta S^{\ominus} = 2 \times 163.0 \text{ J K}^{-1} \text{ mol}^{-1} = +326.0 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta G^{\ominus} = 571.6 \text{ kJ mol}^{-1} - 298 \text{ K} \times 0.326 \text{ kJ K}^{-1} \text{ mol}^{-1} = +474.5 \text{ kJ mol}^{-1} (one mark)$ $E^{\ominus} = 474.5 \times 10^{3} \text{ J mol}^{-1} / (4 \times 96485 \text{ C mol}^{-1}) = -1.23 \text{ V} (one mark)$ Correct final answer scores both marks. One mark for calculation of ΔG^{\ominus} and one mark for calculation of E^{\ominus} . ECF: Allow ECF from part (c).	N
(e)	$E^{\Theta} = -1.23 \text{ V}$ (the same answer as in part (d) – the other half reaction is the standard hydrogen electrode with $E^{\Theta} = 0.00 \text{ V}$) ECF: Accept if answer is same as part (d) or answer is –1.13 V if no answer achieved for part (d).	R
(f)	$\begin{array}{l} CH_4(g) \ + \ 2O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2H_2O(I) \\ \\ \Delta H^{\ominus}{}_{f} \ = \ \Sigma \Delta H^{\ominus}{}_{f} \ (Products) \ - \ \Sigma \Delta H^{\ominus}{}_{f} \ (Reactants) \\ \\ \Delta H^{\ominus}{}_{f} \ = \ 2 \ \times \ -285.8 \ kJ \ mol^{-1} \ -393.5 \ kJ \ mol^{-1} \ + \ 74.8 \ kJ \ mol^{-1} \ = \ -890 \ kJ \ mol^{-1} \end{array}$	R
(g)	$\Delta H^{\Theta}_{r} = -285.8 \text{ kJ mol}^{-1}$ The same reaction as the standard enthalpy change of formation of water, which is given. This is the only correct answer – no ECF for this part.	M

All must be correct for mark.

	٠	١.	
I	I	۱.	
I	I	1	
	i	ii	ii)

Substituents on the same face	Truxinates		
Тwo	Ar Ar	Ar R Ar ^{vv} 7R	
Has enantiomer?	YES NO	YES NO	
		_	
Two (continued)	Ar Ar ^v , R		
Has enantiomer?	YES NO	YES NO	

The structures are worth two of the three marks. The structures can be in any order. Three correct structures and one blank box is worth two marks. Two correct structures and two blank boxes is worth one mark. Three correct structures and one incorrect structure or duplicated structure is worth one mark. All other combinations are worth zero marks for this part.

The YES/NO for enantiomers are worth one of the three marks. Must all be correct for the mark. Every structure they have drawn must have the correct YES/NO for that structure. (NB Any structure with a plane of symmetry or a centre of inversion does not have an enantiomer and so is a NO, others are YES). This means ECF is being awarded for the chirality mark, i.e. if the YES/NO are consistent for every structure they have drawn they get the mark.

 \checkmark

 \checkmark

 \checkmark

4.	This	question is about silicon oxides	Mark
(a)	(i)	CO ₂	$\mathbf{\nabla}$
	(ii)	A total charge of 4- or four individual charges of 1- must be indicated for mark to be awarded. $(X = Na4SiO_4 - This is not needed for the mark).$	N
	(iii)	$SiO_2 + 2Na_2CO_3 \rightarrow Na_4SiO_4 + 2CO_2$ Must be fully correct for mark.	$\mathbf{\nabla}$
(b)		$O_3 + 2HCI + 10H_2O \rightarrow SiO_2.11H_2O + CaCl_2$ be fully correct for mark.	$\mathbf{\nabla}$
(c)	4		$\mathbf{\nabla}$
(d)	(i)	$ \begin{array}{c} \overbrace{S_{i}}^{\circ} \overbrace{O}^{\circ} $	N
	(ii)	The overall charge must be indicated as 12- or the sum of individual charges must be equal to 12 3D shape is not important. Credit can be given for alternative answers as long as formula is correct, overall charge is correct, and has only Si-O bonds and no Si=O double bonds, Si-Si bonds or O-O bonds drawn.	N

(e)	From overall formula need to remove 3 \times Mg²+ and 2 \times OH $^-$ This leaves $[Si_4O_{10}]^{4-}$	$\mathbf{\nabla}$
	The overall charge must be indicated for the mark.	
(f)	Mineral	
	20.32 g / 24.305 g mol ⁻¹ = 0.836 mol Mg = n Mg	
	28.18 g / 28.035 g mol ⁻¹ = 1.003 mol Si = n Si (One mark for both)	
	Talc has ratio of 3 Mg to 4 Si	
	Chrysotile has 3 Mg to 2 Si.	
	Mineral with x talc and $(1 - x)$ chrysotile has ratio 3 Mg to 2 $(1+x)$ Si	
	So n Si / n Mg = 2 (1 + x) / 3 (One mark)	
	n Si / n Mg = 1.003 / 0.836 = 2 (1 + x) / 3	
	x = 0.8	
	so 80% talc (One mark)	
	Correct final answer with working scores three marks. Exact steps may vary. First mark can be awarded for correct calculation of the number of moles of both Mg and Si. Second mark can be awarded for a correct ratio in terms of x and $1-x$ (can be either way around). Third mark is only for correct answer as a percentage.	
	Total out of 12	12

5.	This	question is about colourful compounds	Mark
(a)	//		R
(b)	(i)	$\Delta E = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1} \times 2.998 \times 10^8 \text{ m s}^{-1} / 210 \times 10^{-9} \text{ m}$ = 9.46 × 10 ⁻¹⁹ J or 9.46 × 10 ⁻¹⁹ m ² kg s ⁻²	\mathbf{N}
	(ii)	$L^2 = \frac{(2n+1)h^2}{8m_e\Delta E}$	
		$n = 2 (One \; mark)$ $L^{2} = 5 \times (6.626 \times 10^{-34} \text{ m}^{2} \text{ kg s}^{-1})^{2} / (8 \times 9.109 \times 10^{-31} \text{ kg} \times 9.46 \times 10^{-19} \text{ m}^{2} \text{ kg s}^{-2})$ $= 3.1844 \times 10^{-19} \text{ m}^{2}$ $L = 5.64 \times 10^{-10} \text{ m}$	N
		= 5.64 Å (One mark) Correct answer in Å scores both marks. First mark can be awarded for explicit statement of $n = 2$. Do not award second mark if answer is only in m and not in Å. ECF: Answer = $(5.49 \times 10^{-9} / \text{ answer to part } (i)^{\frac{1}{2}})$ Å	
(c)	(i)	$\varepsilon = \lambda / d^{2}$ $= 5714 \text{ Å} / (2 \times 2.052 \text{ Å})^{2}$ $\varepsilon = 339.3 \text{ Å}^{-1}$ No mark if given in different units.	
	(ii)	$d^{2} = \lambda / \varepsilon$ $d^{2} = 5687 \text{ Å} / 339.3 \text{ Å}^{-1}$ $d^{2} = 16.7609 \text{ Å}^{2}$ d = 4.094 Å N–Zn bond = 2.047 Å <i>No mark if given in different units.</i>	M
	(iii)	$\lambda = \varepsilon d^{2}$ $\lambda = 339.3 \text{ Å}^{-1} \times (4.112 \text{ Å})^{2}$ $\lambda = 573.7 \text{ nm}$ No mark if given in different units.	R

(d)
$$\begin{aligned} k_{1(493K)} &= A \exp\left(-\frac{E_{\alpha}}{RT_{(193K)}}\right) \\ k_{1(393K)} &= A \exp\left(-\frac{E_{\alpha}}{RT_{(193K)}}\right) \\ \frac{k_{1(393K)}}{k_{1(393K)}} &= \exp\frac{E_{\alpha}}{R}\left(-\frac{1}{T_{(193K)}}+\frac{1}{T_{(393K)}}\right) \text{ One mark} \\ \ln\left(\frac{k_{1}(eex)}{k_{1(393K)}}\right) &= \frac{E_{\alpha}}{R}\left(-\frac{1}{T_{(193K)}}+\frac{1}{T_{(393K)}}\right) \text{ One mark} \\ \ln\left(\frac{k_{1}(eex)}{k_{1(393K)}}\right) &= \frac{R_{\alpha}}{R}\left(-\frac{1}{T_{(193K)}}+\frac{1}{T_{(393K)}}\right) \\ E_{\alpha} &= \frac{R \ln\left(\frac{k_{1}(eex)}{k_{1(393K)}}\right)}{\left(-\frac{1}{493K}+\frac{1}{393K}\right)} \\ E_{\alpha} &= \frac{8.314 J K^{-1} mol^{-1} \ln\left(\frac{3.31 \times 10^{12} s^{-1}}{1.32 \times 10^{12} s^{-1}}\right)}{\left(-\frac{1}{493K}+\frac{1}{393K}\right)} \\ E_{\alpha} &= 14.8 \text{ kJ mol}^{-1} \text{ One mark} \\ Correct final answer with working scores full marks. One mark can be awarded for method if they have an expression where A has been removed. Second mark can be awarded if a logarithm has subsequently been taken. Third mark is for final answer. \\ (e) &-2\alpha + \beta T &= -\alpha \left(2 - \frac{\alpha RT}{E_{\alpha}}\right) \\ -2\alpha + \beta T &= -2\alpha + \frac{\alpha^2 RT}{E_{\alpha}} \\ \beta &= \frac{\alpha^2 R}{E_{\alpha}} \\ One mark \\ T\left(\frac{\beta}{T}\right)^{\frac{1}{2}} &= T\left(\frac{2E_{\alpha}}{\mu}\right)^{\frac{1}{2}} \left(\frac{\alpha^2 R^2}{E_{\alpha}^2}\right)^{\frac{1}{2}} \\ \left(\frac{\beta}{T}\right)^{\frac{1}{2}} &= \pi \left(\frac{2E_{\alpha}}{E_{\alpha}}\right)^{\frac{1}{2}} \left(\frac{2E_{\alpha}R}{E_{\alpha}}\right)^{\frac{1}{2}} \\ \left(\frac{\beta}{T}\right)^{\frac{1}{2}} &= (\rho)^{\frac{1}{2}} \left(\frac{2E_{\alpha}R}{E_{\alpha}}\right)^{\frac{1}{2}} \\ \left(\frac{\beta}{T}\right)^{\frac{1}{2}} &= (\rho)^{\frac{1}{2} \left(\frac{2E_{\alpha}R}{\mu^2}\right)^{\frac{1}{2}} \\ R_{\alpha} \\ F_{\alpha} \\ R_{\alpha} \\ R_$$

<u>র</u> ব্র

N

(f)
$$\ln\left(\frac{k_{2(33,K)}}{T_{(33,K)}}\right) = \beta T_{(33,K)} + i - \left(\ln\left(\frac{k_{2(61,K)}}{T_{(61,K)}}\right) = \beta T_{(61,K)} + i\right)$$
$$\ln\left(\frac{k_{2(33,K)}}{T_{(33,K)}}\right) - \ln\left(\frac{k_{2(61,K)}}{T_{(61,K)}}\right) = \beta T_{(33,K)} - \beta T_{(61,K)}$$
$$One mark$$
$$\ln\left(\frac{k_{2(33,K)}}{T_{(33,K)}R_{2(61,K)}}\right) = \beta (T_{(33,K)} - T_{(61,K)})$$
$$\beta = \frac{\ln\left(\frac{k_{2(33,K)}}{T_{(33,K)}R_{2(61,K)}}\right)}{(T_{(33,K)} - T_{(61,K)})}$$
$$One mark$$
$$\beta = \frac{\ln\left(\frac{k_{2(33,K)}}{T_{(33,K)}R_{2(61,K)}}\right)}{(R_{33,K} - R_{10,K})}$$
$$\beta = \frac{\ln\left(\frac{k_{2(33,K)}}{R_{10,K}}\right)^{T_{10,K}}}{(R_{33,K} - R_{10,K})}$$
$$\beta = \frac{\ln\left(\frac{k_{2(33,K)}}{R_{10,K}}\right)^{T_{10,K}}}{(R_{33,K} - G_{11,K})}$$
$$\beta = \frac{\ln\left(\frac{k_{2(33,K)}}{R_{10,K}}\right)^{T_{10,K}}}{(R_{10,K} - G_{11,K})}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}$$
$$\beta = \frac{1}{R_{10,K}}}$$
$$\beta = \frac{1}{R_{10,K}}$$

6.	This question is about anammox and ladderanes.			Mark
(a)	(i) nitrogen gas ammonium ion 0 -3 Both must be correct for mark.			
	 (ii) nitrite ion (NO₂⁻) +3 All three correct two marks. Two of 	hydrazine (NH₂NH₂) −2 correct one mark. One or zer	hydroxylamine (NH₂OH) −1 o correct no marks.	\mathbf{N}
(b)	(i) $NO_2^- + 4e^- + 5H^+ \rightarrow NH$ Must be fully correct for man Also accept $NO_2^- + 4e^- +$	rk		
	(ii) $NH_4^+ + NH_2OH \rightarrow NH_2NH_0$ or $NH_4^+ + NH_2OH \rightarrow NH_2$ or $NH_4^+ + NH_2OH \rightarrow [NH_0]$ Must be fully correct for man Also accept analogous equal	₂ NH ₂ + H ₃ O ⁺ I ₂ NH ₃] ⁺ + H ₂ O	otonated	
	or $[NH_2NH_3]^+ \rightarrow N_2 + 4e^- +$	$NH_2NH_2 \rightarrow N_2 + 4e^- + 4H^+$ or $[NH_2NH_3]^+ \rightarrow N_2 + 4e^- + 5H^+$ <i>Must be fully correct for mark</i>		
(c)	$NO_2^- + NH_4^+ \rightarrow N_2 + 2H_2O$ Must be fully correct for mark			
(d)	A HO HO One mark. No stereochemistry red	One mark. No ECF is allowed	B Stereochemistry required. based on A only if their s consistent with molecular	N N
	C S One mark. No stereochemistry red ECF as can work backwards.	quired. No	D Cl D=S stereochemistry required. No	N

HO HO MO MO MO MO MO MUST Have exactly and unambiguously eight carbon atoms in the side chain to score the mark.	
Total out of 20	20