

45th INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round 1 - 2013

MARK SCHEME

Question	1	2	3	4	5	Total
Mark	9	13	9	15	17	63

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

For answers with missing or incorrect units, penalise 1 mark for the first occurrence in **each** question. Do not penalise for subsequent occurrences in the same question.

Que	estior	1	
(a)		$3N_2H_4(I) \rightarrow 4NH_3(g) + N_2(g)$	1
		[Ignore state symbols]	
(b)		$\Delta_{\rm r} {\rm H}^{\rm e} = ((2 \times 46.1) + 187.8 - (2 \times 285.8) + \Delta_{\rm f} {\rm H}^{\rm e} ({\rm N}_{2} {\rm H}_{4})) {\rm kJ mol}^{-1} = -241.0 {\rm kJ mol}^{-1}$	
		$\Delta_{\rm f} {\rm H}^{\rm e} \left({\rm N}_2 {\rm H}_4 \right) = 50.6 \ {\rm kJ \ mol}^{-1}$	
		Decomposition enthalpy = $-50.6 \text{ kJ mol}^{-1}$	1
		[Positive answers of correct magnitude do not score credit.]	
(c)	(i)		1
		[No partial credit given]	

	(ii)	$CH_3OH(I) + 3H_2O_2(I) \rightarrow CO_2(g) + 5H_2O(I)$	1
		[Ignore state symbols]	
	(iii)	Amount of hydrazine = 225000 cm ³ × 1.021 g cm ⁻³ / 32.052 g mol ⁻¹ = 7167 mol	
		Amount of methanol = $862000 \text{ cm}^3 \times 0.7918 \text{ g cm}^{-3} / 32.042 \text{ g mol}^{-1}$ = 21301 mol	1
		[Both amounts needed for one mark]	
		Heat energy evolved from hydrazine = 7167 mol × 622.2 kJ mol ^{-1} = 4.459 x 10 ⁶ kJ	
		Heat energy evolved from methanol = 21301 mol × 726.0 kJ mol ^{-1} = 15.465 x 10 ⁶ kJ	
		Total heat energy evolved from oxidation of rocket fuel = $19.9 \times 10^{6} \text{ kJ}$	1
		[Correct answer scores both marks. Accept –19.9 x 10 ⁶ kJ]	
(d)	(i)	N ₂ and H ₂ O	1
		[Half a mark each. Accept 'nitrogen and water'.]	
	(ii)	NO ₂	1
		[Accept 'nitrogen dioxide'.]	
(e)		(CH ₃) ₂ N-NH ₂	1
		This is known in the trade as UDMH (unsymmetrical dimethylhydrazine)	
		Total	9

Questi	on 2	
(a)	Amount of $S_2O_3^{2^-} = 0.0122 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3} = 1.22 \times 10^{-3} \text{ mol}$	
	Amount of Cu = 1.22×10^{-2} mol	
	Mass of Cu = 1.22×10^{-2} mol × 63.55 g mol ⁻¹ = 0.775 g	
	Percentage of Cu by mass = 100 % × 0. 775 g / 0.800 g = 96.9 %	1
(b)	Volume of medal = $\pi r^2 h = \pi \times (4.25 \text{ cm})^2 \times 0.7 \text{ cm} = 39.72 \text{ cm}^3$	1
	Density of medal = $(0.925 \times 10.49 \text{ g cm}^{-3}) + (0.075 \times 8.96 \text{ g cm}^{-3}) = 10.38 \text{ g cm}^{-3}$	
	Mass of medal = $39.72 \text{ cm}^3 \times 10.38 \text{ g cm}^{-3} = 412 \text{ g}$	1
	[Correct answer scores both marks.]	

(c)		Mass of Au = 0.067 g	
		Amount of Ag = amount of AgCl = $6.144 \text{ g} / (107.87 + 35.45) \text{ g mol}^{-1} = 4.287 \times 10^{-2} \text{ mol}$ Mass of Ag = $4.287 \times 10^{-2} \text{ mol} \times 107.87 \text{ g mol}^{-1} = 4.624 \text{ g}$ Mass of Cu = $5.000 \text{ g} - 0.067 \text{ g} - 4.624 \text{ g} = 0.309 \text{ g}$	
		Percentage of Au by mass = $100 \% \times 0.067 \text{ g} / 5.000 \text{ g} = 1.34 \%$ Percentage of Ag by mass = $100 \% \times 4.624 \text{ g} / 5.000 \text{ g} = 92.5 \%$ Percentage of Cu by mass = $100 \% \times 0.309 \text{ g} / 5.000 \text{ g} = 6.18 \%$	1 1 1
		[One mark awarded for each correct percentage. Allow error carried forward in the copper percentage. Allow minor differences due to rounding.]	
(d)		d = tyre diameter = 0.023 m r = (wheel diameter / 2) – (tyre diameter / 2) = 0.33 m – 0.0115 m = 0.3185 m	1
		[One mark for correct value of r]	
		volume = $\pi^2 \times 0.3185 \text{ m} \times (0.023 \text{ m})^2 / 2$ = 8.314 × 10 ⁻⁴ m ³	1
		[Correct answer scores both marks.]	
(e)	(i)	$p = 8.27 \times 10^5 \text{ Pa}; V = 8.31 \times 10^{-4} \text{ m}^3; T = 298 \text{ K}$	
		n = pV/RT	1
		[One mark for correct method.]	
		n = (8.27 × 10^5 Pa × 8.31 × 10^{-4} m ³) / (8.314 J K ⁻¹ mol ⁻¹ × 298 K) n = 0.278 mol	1
		[Correct answer scores both marks; $n = 0.334$ mol if value of 0.001 m ³ used for volume.]	
	(ii)	$N_2 = 28.02 \text{ g mol}^{-1}; O_2 = 32.00 \text{ g mol}^{-1}$	
		mass in one tyre = $((0.8 \times 28.02 \text{ g mol}^{-1}) + (0.2 \times 32.00 \text{ g mol}^{-1})) \times 0.278 \text{ mol}$ mass in one tyre = 8.011 g	
		mass of air in both tyres = $8.011 \text{ g} \times 2$ = 16.02 g	1
		[Mass = 19.25 g if value of 0.001 m ³ used for volume. Allow any approximations that are more accurate than this, for example if the student has decided to use 78% N ₂ , 21% O ₂ , 1% Ar.]	
	(iii)	$He = 4.003 \text{ g mol}^{-1}$	
		mass = 2 × 0.278 mol × 4.003 g mol ^{-1} mass = 2.226 g	
		mass reduction = 16.02 g - 2.226 g mass reduction = 13.79 g	1
		[Error carried forward: accept answer from (e)(ii) minus 2.226 g or answer from (e)(ii) minus 2.674 g if 0.001 m ³ used for volume.]	

	_	otal	1
	[Error carried forward: accept 81.209 g minus answer from (e)(ii), or 97.568 g minus answer from (e)(ii) if 0.001 m ³ used for volume.]		
	mass increase = $81.209 \text{ g} - 16.02 \text{ g}$ mass increase = 65.19 g		1
	mass = $2 \times 0.278 \text{ mol} \times 146.06 \text{ g mol}^{-1}$ mass = 81.209 g		
(iv)	$SF_6 = 32.06 \text{ g mol}^{-1} + (6 \times 19.00 \text{ g mol}^{-1}) = 146.06 \text{ g mol}^{-1}$		
	Although this mass reduction is small, it is significant enough to be considered. Unfortunately being very small, helium escapes through the rubber of tyres much more easily and so is rarely used.	I	

(b) T lead(II) nitrate Image: Construction of the construle of the construction of the construction of the con	(-)		
Orange G H Yellow G H Green F Blue D H Violet I I I I (Award half a mark for each colour. For yellow and blue both letters are needed to score the half mark for that colour.] 3 Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colour.] 3 (b) Image: Color of the half mark for that colour.] Image: Color of the half mark for that colou	(a)		
Yellow G H Green F Blue D H Violet I IAward half a mark for each colour. For yellow and blue both letters are needed to score the half mark for that colour.] 3 (b) T lead(II) nitrate 3 U sodium iodide 4 4 V barium chloride 4 4 W silver nitrate 4 5 X sodium carbonate 7 1 1 Y iron(II) sulfate 5 2 2 1 All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 1 correct = 1 mark 1 Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.] 6			
Green F Blue D H Violet I			
Bue D H Violet I [Award half a mark for each colour. For yellow and blue both letters are needed to score the half mark for that colour.] 3 (b) T lead(II) nitrate 1 U sodium iodide 1 1 V barium chloride 1 1 W silver nitrate 1 1 X sodium carbonate 1 1 Y iron(II) sulfate 2 1 1 Z chlorine water/dissolved chlorine gas 6 1 1 All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.] 6			
Violet I [Award half a mark for each colour. For yellow and blue both letters are needed to score the half mark for that colour.] 3 (b) T lead(II) nitrate 1 U sodium iodide 1 1 V barium chloride 1 1 W silver nitrate 1 1 X sodium carbonate 1 1 Y iron(II) sulfate 2 1 1 All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.] 6			
Image: Constraint of the second colour. For yellow and blue both letters are needed to score the half mark for that colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score some colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score some colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score some colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score some colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score score some colour. For yellow and blue both letters are needed to score some colour.] 3 (b) Image: Constraint of the second colour. For yellow and blue both letters are needed to score score some colour. For yellow and blue both letters are needed to score sc			
T lead(II) nitrate U sodium iodide V barium chloride W silver nitrate X sodium carbonate Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			3
U sodium iodide V barium chloride W silver nitrate X sodium carbonate Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]	(b)		
V barium chloride W silver nitrate X sodium carbonate Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			
W silver nitrate X sodium carbonate Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			
X sodium carbonate Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			
Y iron(II) sulfate Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			
Z chlorine water/dissolved chlorine gas All 7 correct = 6 marks 3 correct = 3 marks 5 or 6 correct = 5 marks 2 correct = 2 marks 4 correct = 4 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.] 6			
All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks 3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			
3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]			6
3 correct = 3 marks 2 correct = 2 marks 1 correct = 1 mark [Ignore spelling errors as long as substance is recognisable. Oxidation states not needed. Accept if correct chemical formulae have been written instead of words.]		All 7 correct = 6 marks 5 or 6 correct = 5 marks 4 correct = 4 marks	
Accept if correct chemical formulae have been written instead of words.]			
Accept if correct chemical formulae have been written instead of words.]			
		Accept if correct chemical formulae have been written instead of words.]	
		Tota	ul 9

Question 4			
(a)	(i)	10.8 %	1
		More modern syntheses have considerably improved upon this overall yield.	

 Mass of diazepam per dose = 5×10^{-3} g	
Total mass of diazepam = 5×10^{-3} g × $4 \times 365 \times 3$ Total mass of diazepam = 21.9 g [Allow an extra day added for a leap year.]	
Amount of diazepam = $21.9 \text{ g} / 284.734 \text{ g mol}^{-1}$ Amount of diazepam = 0.0769 mol	
Amount of 4-chloroaniline = $0.0769 \text{ mol} / 0.108$ Amount of 4-chloroaniline = 0.712 mol Molecular formula of 4-chloroaniline = C_6H_6NCI M_r of 4-chloroaniline = $(6 \times 12.01 \text{ g mol}^{-1}) + (6 \times 1.008 \text{ g mol}^{-1}) + 35.45 \text{ g mol}^{-1} + 14.01 \text{ g mol}^{-1}$	1
Mass of 4-chloroaniline = $0.712 \text{ mol} \times 127.568 \text{ g mol}^{-1}$ Mass of 4-chloroaniline = 90.8 g	1
[Correct answer scores both marks. Error carried forward: accept answers based on incorrect answer to (a)(i)]	
Structure of A	
Br	
H ₂ N	
CI	1
Structure of B	
H CI	1
Structure of C	
	1
	Total mass of diazepam = 21.9 g [Allow an extra day added for a leap year.] Amount of diazepam = 21.9 g / 284.734 g mol ⁻¹ Amount of diazepam = 0.0769 mol Amount of 4-chloroaniline = 0.0769 mol / 0.108 Amount of 4-chloroaniline = 0.712 mol Molecular formula of 4-chloroaniline = $C_{6}H_{6}NCI$ M ₇ of 4-chloroaniline = $(6 \times 12.01 \text{ g mol}^{-1}) + (6 \times 1.008 \text{ g mol}^{-1}) + 35.45 \text{ g mol}^{-1} + 14.01 \text{ g mol}^{-1}$ M ₇ of 4-chloroaniline = 0.712 mol x 127.568 g mol ⁻¹ M ₈ of 4-chloroaniline = 0.712 mol x 127.568 g mol ⁻¹ Mass of 4-chloroaniline = 90.8 g [Correct answer scores both marks. Error carried forward: accept answers based on incorrect answer to (a)(i)] Structure of A $H_2N = \int_{C_1}^{B_r} \int_{C_1}^{C_1}$ [If bromine atom is in wrong position on benzene ring, no credit is given here, but full credit is awarded in B, D, E and F provided rest of structure correct.]

Que	estior	15	
(a)		$C_4H_9N_3O_2.H_2O$ or $C_4H_{11}N_3O_3$ [Accept answers where order of elements is different.]	1

(e)	E and K	1
	[Award half a mark each. If other letters are written minus half a mark for each other letter down to zero.]	
(f)	[Any one of the five alternatives below is to be awarded the mark.] The percentage of each tautomer is solvent dependent, although the top two are by far the most important. In protic solvents, hydrogen-bonding favours the top left structure.	
	$O = \bigvee_{N=1}^{N} \bigvee_{NH_2} O = \bigvee_{H=1}^{N} \bigvee_{NH}$	1
	$HO \longrightarrow N \longrightarrow NH_2$ $HO \longrightarrow N \longrightarrow NH$ $HO \longrightarrow N \longrightarrow NH$	
(g)	K = [Creatinine] / [Creatine] K = Integral height of signal A / Integral height of signal B K = 4	1
	[This has no units. Award values between 3.5 and 5.0 the mark. There must be evidence of working/using the correct integral method to gain the mark.] <i>Creatinine is favoured at more acidic pHs and creatine at more alkaline pHs.</i>	
(h)	$H_2N \xrightarrow{NH}_N \xrightarrow{O}_{-}$	
	. 0	3
	[The correct structure is to be awarded 3 marks. The hydrochloride salt of this molecule (protonated on any one nitrogen) should also be awarded 3 marks. Incorrect structures may score 2 marks if they obey any two of the three criteria below, and 1 mark for obeying any one of the criteria.]	
	 A total of 10 C–H protons in the molecule. This shows the student has successfully used the integrals in the spectrum to calculate the number of hydrogens. The presence of a discrete ethyl group in the molecule. 	
	 This shows the student has understood the coupling patterns in the NMR. The presence of an ester functional group in place of the carboxylic acid. This shows the student has understood the ionisation states of the molecule at different 	
	pHs.	17
	Total	17