40th INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round One - 2008

MARKING SCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once.

Total 62 marks.

	tion 1	Answer	Marks
(a)		$SiO_2 + C \rightarrow Si + CO_2$	1
		(also accept SiO ₂ + 2C \rightarrow Si + 2CO)	
(b)	i)	109 °	1
	ii)	$SiHCl_3 + H_2 \rightarrow Si + 3HCl$	1
(c)	i)	$4SiH(OCH_2CH_3)_3 \rightarrow SiH_4 + 3Si(OCH_2CH_3)_4$	1
	ii)	$SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$	1
(d)	i)	$C_x = 2.00 \times 10^{-3} \times 3300 (1 - 0.95)^{-0.998} = 131 \text{ ppm}$	2
	ii)	If k is small, k -1 ≈ -1 ∴ 10 = 8.00 x 10 ⁻⁶ x 1300 (1 - x) ⁻¹ 1 - x = 0.00104 0.104% would have to be discarded	2

9 marks

Question 2	Answer	Marks
(a)	$H_{3}C$ CH_{3} C	3
(b)	H ₃ C (H_3) $(H_$	2
(c)	Zero	1
(d)	In 40 min, (42-7) μ g/g dry mushroom of vitamin D ₂ produced (42-7)/40 = 0.875 μ g(g dry mushroom) ⁻¹ min ⁻¹ $\therefore k = 0.0146 \mu$ g(g dry mushroom) ⁻¹ s ⁻¹ (1 mark for the value of k, and 1 mark for the correct units)	2
(e)	In 40 min, (14-3) μ g/g dry mushroom of vitamin D ₂ produced \therefore In 60 min, ((14-3) x 60/40) + 3 = 19.5 μ g/g dry mushroom In 10g of dry mushrooms, 19.5 x 10 = 195 μ g of vitamin D ₂	1
(f)	At 25 °C, $k_{(T)} = A \times e^{(-E_a)(8.314 \times 298))}$ At 35 °C, $2k_{(T)} = A \times e^{(-E_a)(8.314 \times 308))}$ $e^{(-E_a)(8.314 \times 308))} = 2 \times e^{(-E_a)(8.314 \times 298))}$ $- E_a/(8.314 \times 308) = \log_e 2 - E_a/(8.314 \times 298))$ $0.0004036 E_a - 0.0003905 E_a = 0.693$ $0.0000131 E_a = 0.693$ $E_a = 53 \text{ kJ mol}^{-1}$	2

Note: Tests are to be taken under controlled conditions. Students must not have access to the information contained in this marking scheme prior to, or during, the test.

.

1	1	marks

Questio	Answer	Marks
(a)	$Hg(CNO)_2 \rightarrow Hg + N_2 + 2CO$	1
(b)	2(–111) – 386 = –608 kJ mol ⁻¹	2
(c)	O←N≡C-Hg-C≡N-→O (also accept $^{-}O-^{+}N=C-Hg-C=N^{+}-O^{-}$)	1
(d)	N≡C–O–Hg–O–C≡N (<i>also accept</i> Hg ²⁺ (⁻ C≡N ⁺ –O ⁻) ₂)	1
(e)	Aromatic structure:	2
-	Non-aromatic structure:	

Question 4			
		Answer	Marks
(a)		6	1
(b)	i)	Al ₂ Cl ₆	1

		Answer	Marks
(a)	i)	301	1
	ii)	114	1
	iii)	227	1
(b)		9!/2 = 181440	2
(c)		 Cysteine Isoleucine Leucine Glutamine Aspartic Acid Cysteine Proline (Lose one mark for each incorrect amino acid) 	5

