Olympiad Round 1 2003 - Mark Scheme

(a)
$$CaO + H_2O \rightarrow Ca(OH)_2$$
 (1)

(c)
$$?_rH = -1003 + 635 + 286 = -82 \text{ kJ mol}^{-1}$$
 (1) fig + sign

(e) 1 mol CaO provides 82 kJ We need 35.1 kJ = 35.1 / 82 mol = 0.428 mol Taking RMM for CaO as 56, minimum mass required = $56 \times 0.428 = 24.0$ g (1) (Actual mass used in cans = 70g)

Total 5

2. Reinecke's Salt

(a) Cr (Ar = 52.0) is 15.5% of total Therefore total = $\frac{100}{15.5}$ X 52.0 = 335.5

For 5
$$\frac{38.15}{100} \times 335.5 = 128$$

$$\frac{128}{32} = 4 = x$$

Therefore
$$NH_4[Cr (SCN)_4(NH3)_y] = 335.5$$

Therefore $18 + 52 + 4 \times 58.1 + 17y = 335.5$
Therefore $17y = 33.5$
 $X = 4$ $y = 2$ (1, 1)

(b)
$$+1 + Cr + 4x - 1 + 2x 0 = 0$$
 (1) Therefore $Cr = +3$

(d) Two octahedral structures, one with 2NH₃ groups adjacent, one with them opposite

Geometrical (1) for 2 shapes (1) for geometric or cis/trans

3. Green Chemistry

(a) (i)
$$C_2H_4 + Cl_2 + Ca(OH)_2 \rightarrow C_2H_4O + CaCl_2 + H_2O$$
 extra H_2O ok (1)
(ii) % atom economy = 44×10 (not 23.6)
 $44 + 111 + 18$ = 25.4 (1)

(c)(i) Mr ibuprofen = 206
% atom economy =
$$\frac{206}{206 + 60}$$
 x 100 = 77.4
(ii) Catalyst (1)

(iii) goes up to
$$100\%$$
 (needed) (1)

Total 6

4. Redox Equations Any suitable equation

(a)
$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 (1)

(b)
$$Cl_2(aq) + 2Br^{-}(aq) \rightarrow 2Cl^{-}(aq) + Br_2(aq)$$
 (1)

(c)
$$Mg(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$$
 (1)

(d)
$$MnO_2(s) + 4H^+(aq) + 2CI^- \rightarrow Mn^{2+}(aq) + 2H_2O(I) + CI_2(g)$$
 (1)

(e)
$$5SO_3^{2-}(aq) + 6H^{+}(aq) + 2MnO_4^{-}(aq) \rightarrow 5SO_4^{2-}(aq) + 2Mn^{2+}(aq) + 3H_2O(1)$$
 (1)

(f)
$$3\text{Sn}^{2+}(\text{aq}) + 14\text{H}^{+}(\text{aq}) + \text{Cr}_2\text{O}_7^{2-}(\text{aq}) \rightarrow 2\text{Cr}^{3+}(\text{aq}) + 3\text{Sn}^{4+}(\text{aq}) + 7\text{H}_2\text{O}(\text{I})$$
 (1)

(g)
$$3MnO_4^-(aq) + 24H^+(aq) + 5Fe^{2+}(aq) + 5C_2O_4^{2-}(aq) \rightarrow 3Mn^{2+}(aq) + 12H_2O(I) + 5Fe^{3+}(aq) + 10 CO_2(g)$$
 (2)

Do <u>not</u> penalise State symbols

5. Combining Proportions

12 grains of Sb give 14.4 grains of oxide
 12 grains Sb combine with 2.4 grains of oxygen
 suppose conversion factor for grains to grams = k

moles of Sb =
$$12k/121.8$$
 if used (1) moles of O = $2.4k/16.0$

molar ration Sb : O = (12/121.8) : (2.4/16.0) = 0.9852 : 0.15 = 1:1.5 = 2:3

Formula =
$$Sb_2O_3$$
 (2 marks if answer alone given) (1)

- (b) 1 mol Zn forms 1 mol ZnO 65.4g Zn forms (65.4 + 16.0) g ZnO = 81.4g increase in mass by 81.4 / 65.4 so 60 grains should produce (60 x 81.4) / 65.4 grains = **74.5(8)** grains (2)
- (c) Total mass at end = unreacted Zn + ZnO 60 grains Zn should give 74.58 grains ZnO

If fraction of Zn reacting is a, amount of Zn used is 60 a grains which forms 74.58 a grains of ZnO.

Amount of Zn left = 60 - 60 a

Total mass at end = 60 - 60 a + 74.58 a = 65 grains = 60 + 14.58 a

$$a = (66 - 60) / 14.58 = 0.41(15)$$
 (2)

Mass of unreacted
$$Zn = 60 - 60 a = 35(.31)$$
 grains (1)

Mass of
$$ZnO = 74.58 a = 30(.69)$$
 grains (1)

6. Hydroxylamine and its reaction with iron (III) ions

(a)

no marks for structure except if no angles - then 1 mark.

(1)

(1)

(b) Original NH₃OH⁺CI⁻ solution 1g in 250cm³ = 4gdm⁻³ =
$$\frac{4.00}{69.5}$$
 = 0.0576 mol dm⁻³

 25cm^3 aliquot contains $25 \times 0.0576 = 0.00144$ moles

28.9cm³ of 0.0200 mol dm⁻³ MnO₄ contains
$$\underline{28.9}$$
 x 0.0200 = 0.000578 moles (1)

1 mole $MnO_4^- = 5$ moles Fe^{2+}

Therefore No. of moles $Fe^{2+} = 5 \times 0.000578 = 0.00289$ moles

Ratio
$$NH_3OH^+CI^-$$
: $Fe^{2+} = 1:2$ (1)

(c)
$$x + 3 - 2 + 1 = +1$$
 Therefore $x = -1$
oxidation state of $N = -1$

As $Fe^{3+} \rightarrow Fe^{2+}$, and ratio is 2:1 then oxidation state of product goes up by **2 to +1** (1)

(d) Product must be
$$N_2O$$
 (1)

(e)
$$2NH_3OH^+Cl^- + 4Fe^{3+} \rightarrow N_2O + H_2O + 2Cl^- + 4Fe^{2+} + 6H^+$$
 (2)

7. Rohypnol

8. Polonium

(a)
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2 6p^4$$
 (1)

exact ordering is irrelevant [Xe] $4f^{14} 5d^{10} 6s^2 6p^4$ is also acceptable

(b)
$$\frac{206}{82}$$
 Pb (1)

- (c) half life = 138 days. 1 year = 365 / 138 half lives = 2.645 half lives. Power output after one year = 141 x $(0.5^{2.645})$ = 22.5(4) W g⁻¹ (2)
- (d) after x half lives, power drops to 0.96 of initial, so $[0.5^x] = 0.96$ taking logs: $x(\ln 0.5) = \ln(0.96)$, x = 0.05889 half lives in 5 years so time for one half life = 5 / x = 84.899 years = 85 years (2)

(e)

1 unit cell contains 8 x 1/8 atoms = 1 (1) volume of unit cell =
$$(2r)^3$$
 where r = radius 9.142 g = 1 cm³ = 1 x 10⁻⁶m³ (1) mass of 1 atom = 210 g / 6.022 x 10²³ = 3.487 x 10⁻²² volume occupied by 1 atom = $(2r)^3$ = $(1 \times 10^{-6} / 9.142) \times 3.487 \times 10^{-22}$ m³ (1) = 3.814 x 10⁻²⁹m³

so
$$r = \frac{1}{2}\sqrt[3]{3.8143 \times 10^{-29}} = 1.68(3) \text{ x } 10^{-10}\text{m} = 168\text{pm}$$

(168pm x 2 = 2 unless they can say Total 9 336 diameter)