

Graphs in chemistry: diagnostic exercise

Education in Chemistry September 2020 rsc.li/2ZzBziL

1.	Rearrange the equation to make y the subject.			3. Rearrange the equation to make <i>Q</i> the subject.		4.		ate equation is given below: $cate = 0.005 \times conc$	
	$x = \frac{y-1}{2}$		Along this line, make a scale which goes from 0 to 100. What value does 1 cm on the		$\Delta T = \frac{Q}{mC}$		_	raph is plotted with $conc$ on x -axis and $rate$ on the y - s .	
			scale represent?				·	What is the gradient of the line? What is the <i>y</i> -intercept?	
5.	5. Sketch a graph of $y = 2x - 1$.		6. Determine the y values for the function $y = 3(x + 2)$.		7. Sketch a graph of $rate = 2 \times conc$ and label the axes.		8. Determine the $rate$ values for the function $rate = 1000 \times conc^2$.		
		x	· V				onc	rate	
		C				1 -	0.01	200	
		1).05		
		2).10		
		3).20		
	1								
		1				1			